|
In mathematics, a Ringel–Hall algebra is a generalization of the Hall algebra, studied by . It has a basis of equivalence classes of objects of an abelian category, and the structure constants for this basis are related to the numbers of extensions of objects in the category. ==References== * George Lusztig, ''Quivers, perverse sheaves, and quantized enveloping algebras.'' J. Amer. Math. Soc. 4 (1991), no. 2, 365–421. * * 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Ringel–Hall algebra」の詳細全文を読む スポンサード リンク
|